五軸加工(5 Axis Machining),數(shù)控機床加工的一種模式。
不具備RTCP的五軸機床和數(shù)控系統(tǒng)必須依靠CAM編程和后處理,事先規(guī)劃好刀路,同樣一個零件,機床換了,或者刀具換了,就必須重新進行CAM編程和后處理,因而只能被稱作假五軸,國內很多五軸數(shù)控機床和系統(tǒng)都屬于這類假五軸。當然了,人家硬撐著把自己稱作是五軸聯(lián)動也無可厚非,但此(假)五軸并非彼(真)五軸!
小編因此也咨詢了行業(yè)的專家,簡而言之,真五軸即五軸五聯(lián)動,假五軸有可能是五軸三聯(lián)動,另外兩軸只起到定位功能!
這是通俗的說法,并不是規(guī)范的說法,一般說來,五軸機床分兩種:一種是五軸聯(lián)動,即五個軸都可以同時聯(lián)動,另外一種是五軸定位加工,實際上是五軸三聯(lián)動:即兩個旋轉軸旋轉定位,只有3個軸可以同時聯(lián)動加工,這種俗稱3+2模式的五軸機床,也可以理解為假五軸。
目前五軸數(shù)控機床的形式
兩個轉動坐標一個作用在刀具上,一個作用在工件上(一擺一轉形式)
看過這些結構的五軸機床,相信我們應該明白了五軸機床什么在運動,怎樣運動。
五軸數(shù)控編程抽象、操作困難
這是每一個傳統(tǒng)數(shù)控編程人員都深感頭疼的問題。三軸機床只有直線坐標軸, 而五軸數(shù)控機床結構形式多樣;同一段NC代碼可以在不同的三軸數(shù)控機床上獲得同樣的加工效果,但某一種五軸機床的NC代碼卻不能適用于所有類型的五軸機床。數(shù)控編程除了直線運動之外, 還要協(xié)調旋轉運動的相關計算,如旋轉角度行程檢驗、非線性誤差校核、刀具旋轉運動計算等,處理的信息量很大,數(shù)控編程極其抽象。
五軸數(shù)控加工的操作和編程技能密切相關,如果用戶為機床增添了特殊功能,則編程和操作會更復雜。只有反復實踐,編程及操作人員才能掌握必備的知識和技能。經(jīng)驗豐富的編程、操作人員的缺乏,是五軸數(shù)控技術普及的一大阻力。
國內許多廠家從國外購買了五軸數(shù)控機床,由于技術培訓和服務不到位,五軸數(shù)控機床固有功能很難實現(xiàn),機床利用率很低,很多場合還不如采用三軸機床。
對NC插補控制器、伺服驅動系統(tǒng)要求十分嚴格
五軸機床的運動是五個坐標軸運動的合成。旋轉坐標的加入,不但加重了插補運算的負擔,而且旋轉坐標的微小誤差就會大幅度降低加工精度。因此,要求控制器有更高的運算精度。
五軸機床的運動特性要求伺服驅動系統(tǒng)有很好的動態(tài)特性和較大的調速范圍。
五軸數(shù)控的NC程序校驗尤為重要
要提高機械加工效率,迫切要求淘汰傳統(tǒng)的“試切法”校驗方式 。在五軸數(shù)控加工當中,NC 程序的校驗工作也變得十分重要, 因為通常采用五軸數(shù)控機床加工的工件價格十分昂貴,而且碰撞是五軸數(shù)控加工中的常見問題:刀具切入工件;刀具以極高的速度碰撞到工件;刀具和機床、夾具及其他加工范圍內的設備相碰撞;機床上的移動件和固定件或工件相碰撞。五軸數(shù)控中,碰撞很難預測,校驗程序必須對機床運動學及控制系統(tǒng)進行綜合分析。
如果CAM 系統(tǒng)檢測到錯誤,可以立即對刀具軌跡進行處理;但如果在加工過程中發(fā)現(xiàn)NC 程序錯誤,不能像在三軸數(shù)控中那樣直接對刀具軌跡進行修改。在三軸機床上,機床操作者可以直接對刀具半徑等參數(shù)進行修改。而在五軸加工中,情況就不那么簡單了,因為刀具尺寸和位置的變化對后續(xù)旋轉運動軌跡有直接影響。
刀具半徑補償
在五軸聯(lián)動NC 程序中,刀具長度補償功能仍然有效,而刀具半徑補償卻失效了。以圓柱銑刀進行接觸成形銑削時,需要對不同直徑的刀具編制不同的程序。目前流行的CNC 系統(tǒng)均無法完成刀具半徑補償,因為ISO文件中沒有提供足夠的數(shù)據(jù)對刀具位置進行重新計算。用戶在進行數(shù)控加工時需要頻繁換刀或調整刀具的確切尺寸,按照正常的處理程序,刀具軌跡應送回CAM 系統(tǒng)重新進行計算。從而導致整個加工過程效率十分低下。
針對這個問題, 挪威研究人員正在開發(fā)一種臨時解決方案, 叫做LCOPS(Low Cost Optimized ProductionStrategy , 低耗最優(yōu)生產(chǎn)策略)。刀具軌跡修正所需數(shù)據(jù)由CNC 應用程序輸送到CAM 系統(tǒng),并將計算所得刀具軌跡直接送往控制器。LCOPS 需要第三方提供CAM 軟件,能夠直接連接到CNC 機床,其間傳送的是CAM 系統(tǒng)文件而不是ISO 代碼。對這個問題的最終解決方案,有賴于引入新一代CNC 控制系統(tǒng),該系統(tǒng)能夠識別通用格式的工件模型文件(如STEP 等)或CAD 系統(tǒng)文件。
后置處理器
五軸機床和三軸機床不同之處在于它還有兩個旋轉坐標,刀具位置從工件坐標系向機床坐標系轉換,中間要經(jīng)過幾次坐標變換。利用市場上流行的后置處理器生成器,只需輸入機床的基本參數(shù),就能夠產(chǎn)生三軸數(shù)控機床的后置處理器。而針對五軸數(shù)控機床,目前只有一些經(jīng)過改良的后置處理器。五軸數(shù)控機床的后置處理器還有待進一步開發(fā)。
三軸聯(lián)動時,刀具的軌跡中不必考慮工件原點在機床工作臺的位置,后置處理器能夠自動處理工件坐標系和機床坐標系的關系。對于五軸聯(lián)動,例如在X、Y、Z、B、C 五軸聯(lián)動的臥式銑床上加工時, 工件在C 轉臺上位置尺寸以及B 、C 轉臺相互之間的位置尺寸,產(chǎn)生刀具軌跡時都必須加以考慮。工人通常在裝夾工件時要耗費大量時間來處理這些位置關系。如果后置處理器能處理這些數(shù)據(jù),工件的安裝和刀具軌跡的處理都會大大簡化;只需將工件裝夾在工作臺上,測量工件坐標系的位置和方向,將這些數(shù)據(jù)輸入到后置處理器,對刀具軌跡進行后置處理即可得到適當?shù)腘C 程序。
非線性誤差和奇異性問題
由于旋轉坐標的引入,五軸數(shù)控機床的運動學比三軸機床要復雜得多。和旋轉有關的第一個問題是非線性誤差。非線性誤差應歸屬于編程誤差,可以通過縮小步距加以控制。在前置計算階段,編程者無法得知非線性誤差的大小,只有通過后置處理器生成機床程序后,非線性誤差才有可能計算出來。刀具軌跡線性化可以解決這個問題。有些控制系統(tǒng)能夠在加工的同時對刀具軌跡進行線性化處理,但通常是在后置處理器中進行線性化處理。
旋轉軸引起的另一個問題是奇異性。如果奇異點處在旋轉軸的極限位置處,則在奇異點附近若有很小振蕩都會導致旋轉軸的180°翻轉,這種情況相當危險。
對CAD/ CAM系統(tǒng)的要求
對五面體加工的操作, 用戶必須借助于成熟的CAD/CAM 系統(tǒng),并且必須要有經(jīng)驗豐富的編程人員來對CAD/CAM 系統(tǒng)進行操作。